

### **PHYSICAL PRINCIPLES OF COMPUTED TOMOGRAPHY**



Presentation: Mohamad Akbarnejad Radiobiology and Radiation Protection MSC Pitch

## The mean of **Pitch** in CT?



## Helical (spiral) scanning - pitch



## Pitch for Single-Slice CT

 Image and beam width are same for conventional CT

Pitch = table travel ÷ beam width

Typical pitch values are 0.7 to 1.5

## Conventional Helical CT Detectors

## Image width determined by beam thickness

Pitch = table mm / beam mm



#### Beam Collimation

 Pre-patient collimators define width of beam in z (all systems)

 "Detector" collimators reduce scatter at detectors (some CTs)



## **Multi-slice** CT

· 4 mm 4 mm Penumbra Active detector width Multi-slice CT Single-slice CT

*'Over beaming' caused by wider collimator settings to avoid penumbral effects;* 

#### **Pitch redefined for MDCT**



## **Pitch factor**

- Inter-slice distance is defined as the couch increment minus nominal slice thickness. In helical CT the pitch factor is the ratio of the couch increment per rotation to the nominal slice thickness at the axis of rotation. In clinical practice the interslice distance generally lies in the range between 0 and 10mm, and the pitch factor between 1 and 2.
- The inter-slice distance can be negative for overlapping scans which in helical CT means a pitch < 1.</p>

## **Data Acquisition**

$$Pitch = \frac{\text{Table Movement}}{\text{Collimatio n}}$$

- Continuous Spiral Pitch = 1 (10mm/10mm)
- Extended Spiral Pitch = 2 (20mm / 10mm)
- Overlapping Spiral Pitch =  $\frac{1}{2}$  (5mm/10mm)



AAPM Refresher Course Nashville, TN July 28,1999



AAPM Refresher Course Nashville, TN July 28,1999

## Helical (spiral) scanning - pitch





Pitch=1 Table Travel = Paint Width Uniform Paint



Pitch<1 Table Travel < Paint Width Uniform + Overlapped Paint



Pitch>1 Table Travel > Paint Width Candy Cane Stripes





| Table Speed & Pitch                                                       |                                                 |       |  |  |  |  |  |
|---------------------------------------------------------------------------|-------------------------------------------------|-------|--|--|--|--|--|
| Table Speed is defined as distance traveled<br>in mm<br>per 360° rotation |                                                 |       |  |  |  |  |  |
| Pitch =>                                                                  | Pitch => Table Feed per rotation<br>Collimation |       |  |  |  |  |  |
| Table Feed                                                                | <b>Collimation</b>                              | Pitch |  |  |  |  |  |
| 10 mm/rot                                                                 | 10 mm                                           | 1.0   |  |  |  |  |  |
| 15 mm/rot                                                                 | 10 mm                                           | 1.5   |  |  |  |  |  |
| 20 mm/rot                                                                 | 10 mm                                           | 2.0   |  |  |  |  |  |

#### Pitch 2 covers 2x distance as Pitch 1



10mm P1

More Coverage in the same time with extended Pitch!!





## Scan Range = 300*mm*



10mm P1 10 mm/s 10mm P2 20 mm/s

Cover the same volume in shorter time with extended Pitch



# Pitch

ratio of the distance the table travels per rotation to the x-ray beam width

| Number<br>rotations               | 10 |     | 5  |      | 2.5 |
|-----------------------------------|----|-----|----|------|-----|
| Slice<br>thickness                | 10 | 10  | 10 | 10   | 10  |
| Table<br>movement<br>per rotation | 10 | 15  | 20 | 30   | 40  |
| Pitch                             | 1  | 1.5 | 2  | 3    | 4   |
| Dose                              | 10 | 7.5 | 5  | 3.33 | 2.5 |



Interpolation using samples from single row detector ring

# Conventional



















To reduce artifacts due to table motion during spiral scanning, we use a special reconstruction process called *INTERPOLATION* 

## Helical Interpolation

Collect data (black dots) Rebin to estimate the 180° data (blue squares) Interpolate to estimate image between collected and rebinned data Helical CT needs fast computers



#### **Wide Algorithm**

#### Slim Algorithm



Wide algorithm produces a broader image thickness Wide algorithm uses more raw data => less image noise

#### Pitch 2 scanning produces a broader image thickness Pitch 2 scanning does not increase image noise







30% increase in image thickness with Pitch 2

## Slice Sensitivity Profile (SSP)

SSP describes the effective slice thickness of an image and to what extent anatomy within that slice contribute to the signal



All points within the slice contribute equally & points outside of the slice do not contribute to the image at all .



## **Slice Profile (SP)**

Effective slice thickness of an image
Resolution
Slice Profile

### Factors influencing Slice Profile

- Collimation
- Pitch
- Interpolation algorithm (360° or 180°)





Smoother image



Noisier image

# **Effect of Pitch on Dose and Image Quality**



P = 0.64 CTDI = 47.8 mGy 30% higher



P = 0.83 CTDI = 37 mGy



P = 1.48 CTDI = 20.6 mGy 45% lower

